POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels
نویسندگان
چکیده
Semantic role labeling (SRL) identifies the predicate-argument structure in text with semantic labels. It plays a key role in understanding natural language. In this paper, we present POLYGLOT, a multilingual semantic role labeling system capable of semantically parsing sentences in 9 different languages from 4 different language groups. The core of POLYGLOT are SRL models for individual languages trained with automatically generated Proposition Banks (Akbik et al., 2015). The key feature of the system is that it treats the semantic labels of the English Proposition Bank as “universal semantic labels”: Given a sentence in any of the supported languages, POLYGLOT applies the corresponding SRL and predicts English PropBank frame and role annotation. The results are then visualized to facilitate the understanding of multilingual SRL with this unified semantic representation.
منابع مشابه
Generating High Quality Proposition Banks for Multilingual Semantic Role Labeling
Semantic role labeling (SRL) is crucial to natural language understanding as it identifies the predicate-argument structure in text with semantic labels. Unfortunately, resources required to construct SRL models are expensive to obtain and simply do not exist for most languages. In this paper, we present a two-stage method to enable the construction of SRL models for resourcepoor languages by e...
متن کاملMultilingual Semantic Role Labeling
This paper describes our contribution to the semantic role labeling task (SRL-only) of the CoNLL-2009 shared task in the closed challenge (Hajič et al., 2009). Our system consists of a pipeline of independent, local classifiers that identify the predicate sense, the arguments of the predicates, and the argument labels. Using these local models, we carried out a beam search to generate a pool of...
متن کاملPolyglot: Distributed Word Representations for Multilingual NLP
Distributed word representations (word embeddings) have recently contributed to competitive performance in language modeling and several NLP tasks. In this work, we train word embeddings for more than 100 languages using their corresponding Wikipedias. We quantitatively demonstrate the utility of our word embeddings by using them as the sole features for training a part of speech tagger for a s...
متن کاملMultilingual Dependency-based Syntactic and Semantic Parsing
Our CoNLL 2009 Shared Task system includes three cascaded components: syntactic parsing, predicate classification, and semantic role labeling. A pseudo-projective high-order graph-based model is used in our syntactic dependency parser. A support vector machine (SVM) model is used to classify predicate senses. Semantic role labeling is achieved using maximum entropy (MaxEnt) model based semantic...
متن کاملMultilingual Lexical Semantic Resources for Ontology Translation
We describe the integration of some multilingual language resources in ontological descriptions, with the purpose of providing ontologies, which are normally using concept labels in just one (natural) language, with multilingual facility in their design and use in the context of Semantic Web applications, supporting both the semantic annotation of textual documents with multilingual ontology la...
متن کامل